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Abslmcl. The decls of the image potential on hydrogenic impurity binding energies in 
quasi-onedimensional W A l k  quantum well Wirer with a reclangular CTOSS s t i o n  
are invesligated. The mulls have shown that, when the impurity ion image potential is 
considered, the variations in binding energy are considetable and, when the impurity ion 
and e lecmn image potenlials are considered simultaneously, the m m p o n d i n g  variations 
in binding energy are small. n e  mul l s  also showed t b t  the image potenlial is important, 
erpeeially when the cross Section dimensions of the quantum Wire become small. 

1. Introduction 

With the recent advances in molecular beam epitaxy techniques, it is now possible to 
grow wirelike compound semiconductor structures of low nanometre size. Because 
of the quantum confinement in two directions, the binding energies of excitions and 
impurity states are greatly enhanced in the wires compared with those in quasi-two- 
dimensional quantum well structures. Much theoretical interest has been devoted to 
the study of hydrogenic impurity states in these quasi-one-dimensional semiconductor 
systems 11-41. However, in these studies the image potentials of impurity ions and 
electrons due to the dielectric mismatch inside and outside the quantum well wire 
are neglected. Recently several researchers have considered the image potential 
in semiconductor interfaces and heterostructures and found that the results are 
interesting and the image potential is important 15-91, Gabovich and Rozenbaum 
[q have studied the potential energy of the image forces in MIS Structures, and 
their results agree with experimental data on electron tunnelling in MIS structures. 
Lee and Antoniewicz [6,7] have investigated the electron bound states and surface 
polaron in the vicinity of two orthogonal surfaces, including the electron image 
potential. Cappellini and Delsole [SI have calculated the effects of image potential 
perturbation on the direct and inverse angle-resolved normal photoemission at an 
Si-GaAs semiconductor interface, and the results have shown that the energy shifts 
due to image potential are of the order of tens of millielectronvolts. In addition, in 
[lo] the impurity ion image potential is included in the calculation of the impurity 
binding energies in quantum well structures, but the amount of change in binding 
energy due to the image potential is left unknown. 
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The question is whether or not the effects of the image potential on the 
impurity binding energies are negligible. In this paper we discuss this problem 
by introducing impurity ion and electron image potentials in quasi-onedimensional 
GaAs/A1As quantum well wires. In our calculation, the effectivemass approximation 
and variational approach are adopted. Also, we considered only the ground electronic 
states whose energies (less than 200 mev) are much smaller than the conduction band 
offset (1.07 ev) between AlAs and GaAs; so the potential barrier between AlAs and 
GaAs is assumed to be infinitely high. 

The paper is organized as follows. In section 2 we explain the Hamiltonian of 
hydrogenic impurity states including the image potential. The numerical results and 
discussion are presented in section 3. 

2. Hamiltonian 

Let us consider a quantum wire of GaAs surrounded by AlAs, which is assumed 
to have a rectangular cross section and an infinitely high potential barrier between 
GaAs and AMs. In the effective-mass approximation, the Hamiltonian describing the 
motion of an electron in the quantum Wire can be written 

H(’)(T) = lpI2/2m* + vu (1) 
where p and T are the electron momentum and coordinate, respectively, and m’ 
is the electron-band effective mass which is m’ = 0.06/mu in GaAs with mu the 
free-electron mass. The electron-confining potential well Vu is given by 

where 2d, and 2d,  are the widths of the rectangular quantum wire. 
The energy levels of the unperturbed quantum well wire are given by 

E n n k ,  = E,,,, + h2 k: /2m8 ( 3 4  

4 m n ( s 3 ~ )  = Il/(d,d,)‘/’lsin[(mn/2d,) (s t d , ) l s in [ (n* /2dq)  (U+ d,)] (@) 

where m, n = 1,2,. . . , and L is the length of the quantum wire. 
When a hydrogenic impurity is placed in the quantum wire, the Hamiltonian is 

H(’) (T)  = [p lZ /2m*  - eZ/q[(s - ( y  - yU)’ + :2]1/2 + V, (5) 
where cl  = 13.1 is the static dielectric constant of GaAs and (zu, yo,O) is the position 
of the hydrogenic impurity in the quantum wire. 

Now we let the dielectric mismatch between GaAs and AlAs be expressed as 
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with et = 10.1 the static dielectric constant of AIAs, and elm = 10.9 and eh = 8.16 
the optical dielectric constan% for GaAs and AlAs respectively. The positions of the 
ion image charges are obtained as follows: 
I:U) = 2nu - + 1 ) / 2 1 ~ d =  + so) + + w 1 ( d Z  - zo)n + tu 

=;(o = -2nrci + 1)/21(dr + .U) + 11 - [U + 1)/211(<~ - X,)n + cu 

y:(~) = 2 i r k  - U +  1 ) / 2 i w Y  + yo) + + 1)/21(dY - yo)n + 
Y ; ~ ~ ~ = - ~ u ~ ~ ~ + ~ ~ / ~ l ~ ~ y + y u ~ + ~ ~ - ~ ~ ~ +  1 ) / 2 1 ~ d , - ~ ~ ) n  

(7) 

where k, I = 0 , 1 , 2 , .  . . , and [z] = int I. The electronic Hamiltonian including the 
impurity ion image potential can be written as 

where 
H ( ~ ) ( T )  = lpI2/2m* + v1(r) + V, (9 

(9) V,(r) = -- e2 2 C p ' + ' { [ I - z t ( l ) ] z + [ y - y ~ ( h ) ] Z +  ; 2 } - 1 / 2  
€1 I , k d  i ,j  

is the sum of the impurity ion and its image potentials, where i , j  = +,-. 
In the practical variational calculation, a finite number of image charges were 

included in the expansion of equation (9). Since the dielectric mismatch p is about 
15%, the contribution due to high-order image charge terms could be neglected. In 
our calculation, we have tried to include the image charges up to first- and second- 
order terms, respectively, and found that the differences between the binding energies 
of the two cases are below 4%. So we consider the impurity ion image potential only 
up to second-order terms. 

According to the analysis above, when we further consider the electron image 
potential, only the interaction between the electron and its first four image charges 
are included in order to simplify our calculation, i.e. 

where 

is the electron image potential and 

H ( 3 ) ( r )  = lp1'/27n* + V , ( T )  + V2(r )  + V, 

VZ(T) = C,/(dS - 2) + C,/ (dt  - y2) 

c, = (1/clW)p'$fze2 c, = (l/elm)p'tdye2. (12) 

(10) 

(11) 

Because the image potentials of impurity ions and electrons are small compared 
with the impurity ion potential, the trial wavefunction of H ( j ) ( r )  ( j  = 1,2,3) that 
we take is analogous to that used in [ 1 3 ]  and is written for the ground impurity state 
as 
d>(r)  = Ncos[(n/2d,)z']ms[(n/2d,)yf]exp{-[(l- (y- yU)' + Z ~ ] ' / ~ / X }  

(13) 
where N is the normalization constant and X is the variational parameter. The trial 
wavefunction (13) satisfies the boundary conditions. 

As usual, we define the impurity binding energy as the energy difference between 
the bottom of the electronic conduction band without the impurity and the ground 
level of the impurity state in the quantum wire, i.e. 

(14) E Y )  = (hZn2/8m*)(l/d; + 1/di) - m;m(s(T)IH(j)(T)I1(T)) 
where j = 1,2,3. The above integrals were calculated numerically. 



2264 

3. Results and discussion 

According to the geometric symmetry of the quantum wire, we consider only the 
impurity binding energies in one rectangular cross sem'on and the following typical 
points and lines are selected. In figure 1, 0, A, and B are the centre, the centre of 
one side and the corner of the cross section, respectively, the lines OA, OB, and AB 
connecting these three points. 
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Figure t The W n g u l a r  mss &ion of lhe 
quantum wire. 0. A and B are the centre, the 

x m i r e  of one side and lhe mrner of the quantum 
wire, respectively. 

Figure 2 shows the variations in the impurity binding energy with its position 
on different lines in the cross section of the quantum wire, where we set the cross 
section sizes d, = d, = SO 8, In figure 2 the full curves represent the impurity 
binding energies without the image potential, and the broken curves and chain curves 
represent the impurity binding energies including the impurity ion image potential 
and including the impurity ion and electron image potentials, respectively. 

From figure 2, it is apparent that, when the impurity ion image potential is 
added, the impurity binding energies change markedly. The differences E?) - El') 
between the binding energies in the two cases including and without the impurity 
ion image potential at points 0, A and B are 6.50 meV, 5.73 meV and 5.47 me\! 
respectively. When the impurity moves towards one side or the comer of cross 
section, these differences decrease subsequently. In figure 2, we also found other 
interesting results as follows. When the impurity ion and electron image potentials 
are added simultaneously, the corresponding variations in impurity binding energy are 
small compared with those considering only the impurity ion image potential. The 
differences E?)--E:') between the binding energies of the cases including and without 
the impurity ion and electron image potentials at points 0, A and B are 1.44 meV, 
0.91 meV and 0.58 me\! respectively. Also, when the impurity moves towards the 
boundary of cross section, the variations in binding energy tend to decrease. 

Figure 3 shows the variations in impurity binding energy with the cross section 
dimensions d, = d, of quantum wire at three typical points 0, A and B. As in 
figure 2, here the full curves also represent the impurity binding energies without 
the image potential, and the broken curves and chain curves represent the impurity 
binding energies including the impurity ion potential and including the impurity ion 
and electron image potentials, respectively. In figure 3, it can be easily seen that 
the differences between the impurity binding energies of the cases including and 
without the image potential at the three points 0, A and B increase with decrease 
in cross section dimensions. When the cross section sizes d, = d, = 250 the 
differences E?) - E!') between the impurity binding energies of the two cases 
including and without the impurity ion image potential at the three points 0, 
A and B are 216 meV, 1.58 meV and 1.34 meV, respectively, and the differences 
E?)- E!') between the impurity binding energies of the cases including and without 
the impurity ion and electron image potentials at p i n t s  0, A and B are 0.55 meV, 



Figure 2 Numer id  rerulls for impurity binding 
energ is  on (0) tine OA, (6) line OB and (c) tine 
AB in the mss seclion of the quantum wire, where 
lhe auss section sizes d ,  = d ,  = 50 A. me 
fill cuws represent lhe impurity binding energies 
withoul considering lhe image polenlial, and the 
broken curves and chain NNS represent the 
corresponding impurity binding energies including 
Ihe impurity ion image potential and including 
the impurity ion and electron image polentials, 
respectively. 

Figure 3. The variations in impurity binding 
energy with mss section dimensions d ,  = d, 
at the lhree poinu (0 )  0, (b) A and (c) B in 
the quantum wire. The full Nmes  represent Ihe 
impurity binding energies without considering lhe 
image potential, and the broken curves and chain 
c u t v s  represent the corresponding impurity binding 
energies including the impurity ion image potential 
and including the impurily ion and electron image 
potentials, respectively. 

0.48 meV and 0.40 meV, respectively. When the cross section sizes are reduced to 
d, = d, = 25 A, the corresponding differences E?) - E,!" at the three points 0, A 
and B are 11.83 meV, 10.78 meV and 9.65 meV, respectively, and the corresponding 
differences E?' - Er') at the points 0, A and B are 2.16 meV, 1.70 meV and 
1.30 mey respectively. 

The results obtained above are interesting and their physical interpretation and 
discussion are as follows. From equations (6), we can see that the dielectric 
mismatches p and p' between GaAs and AlAs are larger than zero; so the impurity 
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ion image potential in equation (9) is negative. This is the reason for the marked 
increase in impurity binding energies when the electronic Hamiltonian included the 
impurity ion image potential. In contrast, from equation (ll), we can also see that 
the electron image potential is positive, and the impurity ion and electron image 
potentials cancel each other. As a result, when the sum of the impurily ion and 
electron image potentials is added, the variations in impurity binding energy become 
small. In addition, when the eross section sizes decrease, the quantum confinement 
of electrons is strengthened, and the interaction potential between the electrons and 
image charges increases. This results in an increase in the differences between the 
impurity binding energies of the cases including and without the image potential. 
The results obtained above remind us that the image potential in the quantum wire 
is important. Strictly speaking, the image potential in the quantum wire cannot 
be neglected in calculating the impurity binding energies, especially when the eross 
section dimensions of the quantum wire become small. When the impurity binding 
energies in the quantum wire are calculated, both the impurity ion and the electron 
image potentials should be included in the electronic Hamiltonian simultaneously and 
not only the impurity ion image potential considered. 

In conclusion, -'e have studied the effects of the image potential on hydrogenic 
impurity binding energies and found that, when only the impurity ion image potential 
is included, the variations in binding energy are considerahle and, when the impurity 
ion and electron image potentials are considered simultaneously, the variations in 
impurity binding energy become small. The results also showed that the differences 
between the binding energies of the cases including and without the image potential 
increase with decrease in the eross section dimensions of the quantum wire. These 
remind us that the image potential should be considered in calculating the impurity 
binding energy, especially when the cross section dimensions of the quantum wire are 
small. 

Zhen-Yan Deng and Shi-Wei Gu 
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